广义二项式定理 1(1+x)n=∑k=0∞(n+k−1k−1)xk\frac{1}{(1+x)^n}=\sum_{k=0}^{\infty}\begin{pmatrix}n+k-1\\k-1\end{pmatrix}x^k (1+x)n1=k=0∑∞(n+k−1k−1)xk 各种变换 ∑i=1∞xi=11−x\sum_{i=1}^{\infty}x_i=\frac{1}{1-x} i=1∑∞xi=1−x1 ex=∑i=0∞xii!e^x=\sum_{i=0}^{\infty}\frac{x^i}{i!} ex=i=0∑∞i!xi e−x=1−x1+x22!−x33!+…e^{-x}=1-\frac{x}{1}+\frac{x^2}{2!}-\frac{x^3}{3!}+\dots e−x=1−1x+2!x2−3!x3+… ex+e−x2=1+x22!+x44!+626!+…\frac{e^x+e^{-x}}{2}=1+\frac{x^2}{2!}+\frac{x^4}{4!}+\frac{6^2}{6!}+\dots 2ex+e−x=1+2!x2+4!x4+6!62+… ex+e−x2=1+x33!+x55!+x77!+…\frac{e^x+e^{-x}}{2}=1+\frac{x^3}{3!}+\frac{x^5}{5!}+\frac{x^7}{7!}+\dots 2ex+e−x=1+3!x3+5!x5+7!x7+… ekx=1+x1+k2x22!+k3x33!+…e^{kx}=1+\frac{x}{1}+\frac{k^2x^2}{2!}+\frac{k^3x^3}{3!}+\dots ekx=1+1x+2!k2x2+3!k3x3+…